Sciact
  • EN
  • RU

Tackling the challenge of ML-assisted antibacterial activity prediction: One step closer to controlled quaternary ammonium compounds design via neural networks model Научная публикация

Журнал Bioorganic Chemistry
ISSN: 1090-2120 , E-ISSN: 0045-2068
Вых. Данные Год: 2025, Том: 167, Номер статьи : 109175, Страниц : DOI: 10.1016/j.bioorg.2025.109175
Авторы Ilin Egor A. 1 , Frolov Nikita A. 1 , Seferyan Mary A. 1 , Valeev Anvar B. 1,2 , Vinokurov Andrey D. 1 , Detusheva Elena V. 1,3 , Son Elizabeth 3 , Medvedev Michael G. 1,4 , Vereshchagin Anatoly N. 1
Организации
1 N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russian Federation.
2 Mendeleev University of Chemical Technology of Russia, Miusskaya square 9, Moscow 125047, Russian Federation
3 State Research Center for Applied Microbiology and Biotechnology, Territory “Quarter A", no. 24, Obolensk, 142279 Serpukhov, Moscow Region, Russian Federation
4 National Research University Higher School of Economics, 101000 Moscow, Russian Federation

Реферат: The ongoing rise of resistant bacterial pathogens poses a significant threat to current antibacterials' effectiveness putting millions of people's lives at risk. However, modern machine learning (ML) tools promise to tip the scales in the never-ending development of antimicrobial agents' pipelines. Herein we present a novel approach for quaternary ammonium compounds (QACs) antibacterial activity prediction using adaptable Neural Networks model. Recursive Feature Elimination methodology with Random Forest as a base model was implemented for feature selection followed by a Multilayer Perceptron (MLP) model for the regression task with the LeakyReLU activation function as the baseline architecture. Systematic evaluation revealed that architectural complexity does not improve accuracy in antimicrobial activity prediction. Thus, Kolmogorov-Arnold Networks showed substantial underperformance relative to simpler MLP architectures. Through implementation of biology-informing stacking approach ML model was able to predict minimal inhibitory concentration and minimal bactericidal concentration on both Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 43300 achieving 61–69 % accuracy and R2 of 0.68 through external validation on novel bis-QACs. Developed ML model can serve as an efficient support tool for antimicrobial drug discovery even with limited datasets.
Библиографическая ссылка: Ilin E.A. , Frolov N.A. , Seferyan M.A. , Valeev A.B. , Vinokurov A.D. , Detusheva E.V. , Son E. , Medvedev M.G. , Vereshchagin A.N.
Tackling the challenge of ML-assisted antibacterial activity prediction: One step closer to controlled quaternary ammonium compounds design via neural networks model
Bioorganic Chemistry. 2025. V.167. 109175 . DOI: 10.1016/j.bioorg.2025.109175 OpenAlex
Идентификаторы БД:
OpenAlex: W4415879827
Цитирование в БД: Пока нет цитирований
Альметрики: